
SEPARATING LAYER IN HIGH-TEMPERATURE STREAMS 

A. A. Bobnev UDC 532.526 

An exact solution was constructed in [i] for a high-temperature axisymmetric jet flow 
for Prandtl numbers less than or equal to one. It is shown in this paper that this exact 
solution is acceptable in a Prandtl number range from 1 to 3 but in a bounded domain of vari- 
ation of the radial coordinate. 

i. The problem describing the efflux of a high-temperature jet from a cylindrical hole 
has the following form within the framework of boundary-layer theory: 

r -- + w-g~-),  o,. o , . )  9 v 7 7  / o 

I 0 0 ( 
7 Or (rov)+--o~ ( p w ) - - O ,  9 T =  1,7-57r[1 o (r-o-7)~ v-77-r + w - 5 ~ -  o r l ,  

Ow/Or = v =  OT/Or = 0 for r = O; 

m = O, .T = g for r - +  oo, 

( l .1) 

(1.2) 

(1.3) 

where r, ~ Re are cylindrical coordinates (r and ~ are the internal coordinates in the asymp- 
totic expansion in the small parameter Re-l), Re = #PmI1m/2~/~m is a certain analog of the 
Reynolds number; w and vRe are the axial and radial velocity components; T is the temperature, 
p is the density, Pr = Cpm~m/l m is the Prandtl number. The temperature Tm, density P m, spe- 
cific heat at constant pressure Cpm, heat conduction Im, dynamic viscosity ~m, total momentum 
flux I~m, and total enthalpy flux Iam scales are considered given: 

flm = 2apmVmLm ,- pw-rdr, Iota= .~cp~pmTmV,~Lm ~ 9 (T - -  e) wrdr. 
0 0 

S e l e c t e d  a s  v e l o c i t y  and l e n g t h  s c a l e s ,  r e s p e c t i v e l y ,  a r e  

V ~  = c ~ m T ~ I x ~ / I 2 ~ ,  Lm = I ~ / ( c p ~ T ~  ] / '27pmllm) .  

It was assumed in the system (i.i) that the dynamic viscosity, heat conductivity, and 
specific heat are constants. Not formulated in problem (1.1)-(1.3) are the initial condi- 
tions at ~ = ~o; this is because self-similar solutions will be examined that are suitable at 
large distances from the mouth of the jet (or solutions for point sources). In this case, 
problem (1.1)-(1.3) must be closed by integral conditions for the conservation of the moment- 
um and the enthalpy flux 

.f 9tv2rdr = t ,  .[ p~v (T - -  ~) rdr. (1. 4) 

0 0 

It is expedient to go from the variables r, ~ to the variables x, ~ in the problem (i.i)- 
(1.4), where 

x = r / 1 / ~ ,  (1.S) 

and to introduce s instead of the function v by means of the formula 

s = V ~ v -  ( t /2 )xw.  ( 1 . 6 )  

By u s i n g  ( 1 . 5 )  and ( 1 . 6 )  t h e  p r o b l e m  ( 1 . 1 ) - ( 1 . 4 )  i s  c o n v e r t e d  t o  t h e  f o r m  

x Ox ~ "aTx] 9 s'-aT"x + ~w-~  , (1.7) 
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,7 ax ( x p s ) +  ( ~ p w ) = O ,  p T = I ,  

z ox \ o z ]  P r p  s 7 7  + ~ w ~  ; 

Ou,/'Ox ~ s = OT/Ox = 0 for x = 0; 

w = 0, T = e for x - - ,  co; 

J = .t ( r  - . d .  = 1. 
0 0 

( l .8)  

(1.9) 

(l.1O) 

We will consider problem (1.7)-(i.i0) in the case when s << i, i.e., we shall study the flow 
domain where the temperature on the jet axis is considerably higher than the temperature at 
infinity. The ideas and terminology of the theory of sewn-together asymptotic expansions 
(see [2], say) will be used in constructing the asymptotic expansions, formulating the 
limits, and setting the boundary conditions 

e - + 0 ,  x, $ are fixed (i.ii) 

Then the following asymptotic expansions of the solutions of problem (1.7)-(1.10) which are 
suitable near the boundary r = 0 can be constructed 

W(X, ~; 8)  = IUO(X , ;) @ Vr , ~) ~- V c2(8)UJ2(X, ~) -W . . . .  
T(x, 2; e )=  To(x, ~) + v~(~)r~(x, ~) + . . . ,  9(x, ~; ~) =p0(x, 2) + . . . ,  
s(,, ~; e ) =  s0(z, ~) + v~(~)q(x, ~) + . . . ,  

( 1 . 1 2 )  

here 

%,,,,+1 (~) vr,~+l (~') 
~ 0 ,  ~ 0 ,  for e - ~ 0  ( n = 0 , 1  2 . . . .  ). (1 13)  

vwn (e) v~,, i ~ ' )  . . . . .  

We c a l l  t h e  p r o b l e m  i n  t h e  z e r o t h  a p p r o x i m a t i o n  i n  r when e x p a n s i o n  ( 1 . 1 2 )  i s  s u b s t i t u t e d  i n -  
t o  ( 1 . 7 ) - ( 1 . 1 0 )  t h e  p r o b l e m  o f  t h e  h o t  b o u n d a r y  l a y e r  ( t h e  t e m p e r a t u r e  i n  t h i s  d o m a i n  i s  c o n -  
s i d e r a b l y  h i g h e r  t h a n  t h e  t e m p e r a t u r e  a t  i n f i n i t y ) .  The s y s t e m  o f  e q u a t i o n s  ( 1 . 7 )  and  t h e  
b o u n d a r y  c o n d i t i o n s  ( 1 . 8 )  r e m a i n  i n v a r i a n t  i n  t h i s  p r o b l e m ,  and  i t s  n o n t r i v i a l  s o l u t i o n  i s  

[11: 

3 - e r  z~ 2/(Pr-- 1) P r - k l  [ - - A  ePr,(Pr- I) 
w 0 = - - ~ r  1 - -  , ' T o -  4~ , z8 / ' ( 1 . 1 4 )  

_ _  x 2 ~ ( P r + l L ( P r - 1 )  3 - - P r  t ~ 
S o -  s t  x o ] 

h e r e  xo = / 8 ( P r  + 1 ) / [ ( 3  --  P r ) ( P r  - -  1 ) . ]  The s o l u t i o n s  ( 1 . 1 4 )  a r e  n o r m a l i z e d  a c c o r d i n g  t o  
t h e  i n t e g r a l  c o n d i t i o n s  ( 1 . 1 0 )  w h i c h  h a v e  t h e  f o l l o w i n g  f o r m  f o r  t h e  z e r o t h  a p p r o x i m a t i o n  o f  
t h e  a s y m p t o t i c  e x p a n s i o n  ( 1 . 1 2 )  

x 0 x 0 

0 0 

Let us note that the solutions (1.14) satisfy the integral conditions (1.15) only for Pr < 3. 
For Pr < 1 the solutions (1.14) are acceptable in the whole range of variation of the vari- 
able x (0 < x < ~). It should hence be kept in mind that everything below refers to the 
Prandtl number range 1 < Pr < 3. 

Solutions (1.14) do not satisfy the boundary conditions (1.9); moreover, the asymptotic 
expansion (1.].2) becomes unacceptable near the surface x = Xo. In fact, in a zeroth approxi- 
mation in e in (i.12) the temperature on this surface is zero, and according to boundary con- 
dition (1.9) the temperature equals e even at infinity, i.e., is greater than zero, or the 
zeroth approximation for the temperature in expansion (1.12) becomes less than the latter, 
which contradicts the principles of constructing the asymptotic expansions (1.13). There- 
fore, if it is assumed that the self-similar solution is valid in the neighborhood of the 
boundary r = 0, then near the surface x = xo another asymptotic expansion of problem (1.7)- 
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(i.i0) must be constructed, where the zeroth term for the temperature in this expansion 
should equal a in order of magnitude. 

2. Let us construct the asymptotic expansion of the solution of problem (1.7)-(1.10) 

which is suitable for the surface x = xo, i.e., we assume that a thin (compared to the thick- 

ness of the hot boundary layer) layer exists near the surface x = xo (a domain of a sharp 

gradient of the functions). We later call this layer separating (it separates the high-tem- 
perature compressible gas flow domain with temperature T ~ 1 from the cold incompressible 
gas flow domain with temperature T ~ e). Let us formulate the limit process for the separat- 
ing layer: 

= (z --  xo)/~(e), [ are fixed:6(e) -+ 0 as e - +  O, ( 2 . 1 )  

here ~(c) can be interpreted as a quantity characterizing the thickness of the separating 
layer. The asymptotic expansion of the solutions of problem (1.7)-(1.10) can be represented 
in the form 

w0", ~; e)=v,,:(e)~'(~7, ~) + ~7~ci(e)~'t,(~,, ~) + . . . ,  ( 2 . 2 )  

7 ,. +" ~) T(,,  r e) = e~(V, g) + ~ ~1(o)1 ,(V, + . . . .  

s(~', r e ) =  r ,s(V, r + ~(e).,,%,, g) + . . . ,  

p(P, : ;  e) = e, l~(~j, ~) ~_ (,~(.l(e)pl(V ' +\ 

where  9wn( e ) ,  OTn(e ) ,  Osn ( r  and 90n( r  s a t i s f y  t h e  r e l a t i o n s h i p s  a n a l o g o u s  to  ( 1 . 13 )  and 
t he  z e r o  s u b s c r i p t  i s  o m i t t e d  f rom t h e  z e r o t h  t e r m s .  We d e f i n e  t h e  f u n c t i o n s  of  t h e  s m a l l  
p a r a m e t e r s  Vw, Vs, 8 i n  e x p r e s s i o n s  ( 2 . 2 )  and (2 .1 )  f rom the  c o n d i t i o n  of  merg ing  t he  asymp- 
t o t i c  e x p a n s i o n  f o r  t he  s e p a r a t i n g  l a y e r  w i t h  t h e  e x p a n s i o n  f o r  t h e  h o t  b o u n d a r y  l a y e r  ( 1 . 1 2 ) .  
To do t h i s  we f o r m u l a t e  t he  l i m i t s  i n t e r m e d i a t e  be tween  t h e  l i m i t  f o r  t h e  h o t  b o u n da ry  l a y e r  
(1 .11 )  and t he  l i m i t  f o r  t he  s e p a r a t i n g  l a y e r  ( 2 . 1 ) .  Le t  

• -+ 0, e/z -+ 0, 8~(e)/~(• -+ 0, Vz=(z --  x0)/g(z), ~ are fixed 
( 2 . 3 )  

for e - ~ O ,  

h e r e  y< < O. Then merg ing  (2 .2 )  and (1 .11 )  a t  t h e  i n t e r m e d i a t e  l i m i t  ( 2 . 3 ) ,  we have  

g ~-7o ), [--9•215 + 0  (• \ ~(e) ,r ( 2 . 4 )  

+ o [7~ (~)], 
, ,+ :(&o*' [_ 

4~ \ %7 \ 6(e) 

+ o [V~, (~)], 

where a = 2/(Pr -- I), from which can be obtained successively 

: g(Pr--1)/(2Pr) %~'tc, : gt /Pr  %~s : 8(Pr@l)/(2Pr). (2.5) 

As follows from (1.6), we note that the quantities w and v, in the zeroth approximation 
in a in expansion (2.2) are of the same order of smallness v ~ w ~ e I/Pr while the function 
s ~ s (Pr+~)/(lPr), i.e., s decreases more rapidly than v and w as s § 0. Hence, if problem 
(1.1)-(1.4) were considered initial in the construction of the asymptotic expansions, then 
to realize the successful merger procedure it would be insufficient to use just the zeroth 
terms of the expansions. Conversion of (1.6) and (1.5) would eliminate this difficulty. 

Substituting series (2.2) into problem (1.7)-(1.9), and keeping in mind (2.1) and (2.5), 
we obtain a system of equations for the separating layer in the zeroth approximation in 

~ :~ i~v~ + ~ ) + ( ~ )  = 0, Of 7~-~ ]' 77~j (ps  - ~  ( 2 . 6 )  

~P V TT,, * ~-~ ], )7' = t OF 2 Y ' 

893 



The boundary conditions for system (2.6) 
and (I.II) at the intermediate limit (2.3) [see (2.4)]: 

17, ~ 9,1 
y-+- -oo  

w h i l e  from c o n d i t i o n s  ( 1 . 9 )  as  y + +~, 

t T = O , T  = t for y--> +oo.  

are obtained from the conditions for merging (2.2) 

(2.7), 

(2.8) 

Let us introduce new functions 

( 2 . 9 )  

(2.10) 

The problem (2.6)-(2.8) allows for a self-similar solution. 
and new variables according to the formulas 

7.,~ o7~- ~ ~ 
(v, ~) = r % 01), T (v, r = ~ 0 01), 7 (>  r = [~T(q) ,  v : q[% 

It follows from the boundary condition (2.8) for the temperature that 

~ = O, 

w h i l e  t h r e e  e q u a t i o n s  

- - ~ = - - ( a +  2)~, - - ~ = ~ - - ~ ,  - - i = ~ - - ( a + ~ ) ~ .  (2 .11 )  

can be obtained from the boundary conditions (2.7). Let us note that the self-similarity 
conditions ~w = --2&, ~s = ~ + ~w can be obtained from the system (2.6); however, these con- 
ditions are a corollary of system (2.11). It is possible to find from (2.11) 

: (Pr - -  t)/(2Pr), ~,o = --(Pr  --  t) /Pr,  ~s = - - (Pr  - -  l) /(2er).  (2 .12)  

S u b s t i t u t i n g  ( 2 .9 )  i n t o  p rob lem ( 2 . 6 ) - ( 2 . 8 )  and k e e p i n g  ( 2 . 1 0 ) - ( 2 . 1 2 )  in  mind,  we o b t a i n  the  
system of equations 

~. ~-, ~ ~ ,  
: ~ u  §  /O,g = - - ? ~ / < ~ = P r g ~  (2.13)  

with the boundary conditions 

= ---$--~ ~-0 n~-~ 4 \ x 0 ]  (2 14) 

where the pr ime denotes the d e r i v a t i v e  w i t h  respec t  to  ~, ~(q) = f -- ~q~, 9 = (Pr + l ) / ( 2 P r ) .  
System (2.13)  a l l ows  a power-l:aw s o l u t i o n  of the form 

- ~ ~4-I (2.15) u - -  A(Bq) 7, ~ =  AP,~ (Bq)~+,, ~ _  ~7,] 

where  A and B a r e  a r b i t r a r y  c o n s t a n t s  and t h e  q u a n t i t y  ~ i s  one of  t h e  r o o t s  of  t h e  c u b i c  
e q u a t i o n  

_ _ ~ ~ ~ o -  - 3 ~ o ] ~ - ~ = 0 .  (Pr t ) ? ~  + [(Pr 3 ) ? - -  ~w] a- [27(P~ + 1) (2 .16 )  

It can be shown that for ~ = a = 2/(Pr -- i) Eq. (2.16) becomes an identity, i.e., (2.16) in 
the unknowns ~ and ~w becomes linearly dependent on the first two equations in system (2.11). 
Therefore, by selecting the appropriate constants A and B the solutions (2.15) for ~ = a can 
be interpreted as asymptotic solutions of problem (2.13), (2.14) as q +-~. 

The solutions of problem (2.13), (2.14) as n + + tend to the asymptotic 

= C, exp ~ ] ) ,  0 = I @ C~ exp (g~l) ,  g : #~ = const < 0, (2 .17)  

where C~ and C= are certain constants. 

Problem (2.13), (2.14) was solved numerically for different Prandtl numbers. 
u(N), ~(n), g(~) are displayed in Fig. 

The curves 

1 for Pr = 2. For the numerical integration the bound- 
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ary conditions were posed at a certain large but finite distance. By varying this distance, 
the accuracy of the computation could be assessed when the singular boundary conditions are 
replaced by boundary conditions at a finite interval. The verifying computations permit the 
hope that the computational accuracy of the curves superposed in Fig. 1 is not lower than the 
accuracy of their graphical construction. We note that problem (2.13), (2.14) is invariant 
to the substitution of the variable q § ~ -- qo, where qo is an arbitrary constant [an analo- 
gous remark can also be made for the problem (2.6)-(2.8)]. The quantity no can be determined 
from the conditions for merging the succeeding terms of expansions (1.12) and (2.2). For the 
curves in Fig. i, the quantity qo is selected from the condition ~(0) = 0.05. It is seen 
from Fig. 1 that as q § • the curves tend quite satisfactorily to the asymptotics described 
by (2.15) and (2.17) (the asymptotes are superposed by dashed lines). Let us note that the 
magnitude of the radial velocity undergoes a curious change in th~ separating layer. Thus, 

~ ~ while on the outer (y § on the inner boundary of the separating layer (y § ~w i/~r . 
+~o), v ~ s ~ ~ (Pr+1)72Pr [see (1.6), (2.2), (2.5), (2.17)], i.e., as the quantity E diminishes 
the radial velocity on the outer boundary of the separating layer decreases considerably more 
rapidly than on the inner boundary. 

3. Since problem (1.1)-(1.4) is cylindrically symmetric, it can then be expected that 
the solutions for w and v will damp out as r § ~ (~ is fixed). However, it follows from the 
solution of the problem for the separating layer that the radial velocity outside this layer 
(y § +~) is independent of y [it must be recalled that ~ decreases exponentially as y § +~, 
and also we must return to the definition of the function g(q)]. In this connection, it is 
expedient to formulate the limit process for the domain x > xo in the form 

e - - ~ O ,  x, ~ are fixed, ~ ,  (3.1) 

and to construct the appropriate asymptotic expansions of the solutions of the problem (1.7)- 
(i.i0) in the small parameter ~, which will have the form 

(3.2) 

where ~w(e) = O(~s(e)), while the zero subscript is omitted in the zeroth terms. 

The following reasoning was used in constructing expansions (3.2), which we later call 
~he expansions of the cold boundary layer, to determine the form of the zeroth terms 5w(e), 
~T(E), Vs(8). It follows from the expansions of problem (1.7)-(1.10) for the separating 
layer (2.2), formulas (2.5), and the behavior of these solutions as y § +~ that the tempera- 
ture and the function s become constants (independent of y), equal to ~ and e( pr+~)/iPr • 
~-(er-1)/iP~, respectively, where g~ is a certain constant known from the solution of prob- 
lem (2.13), (2.14). Therefore, for successful realization of the merging procedure, it is 
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necessary to set iT(e) = E, ]s(~) = e(Pr+1)/2Pr, where physical intuition insists that the 
temperature is a monotonic function of r or x (absence of heat sources and sinks). This means 
that ~(x, ~) = 1 for the domain x > xo, which does not contradict the energy conservation 
equation_ The quantity ]w(e) should be assumed small compared with ~s(S) since, in the case 
of ~w = ~s we obtain the following system of equations in the zeroth approximation in 

- ~zt-~ - -  ~t-- '  1 0 ,:i 
s-~ x q- ~w--~-~-=~ O, ~- ,~--~ (x~) -~ ~-~ ( ~ ' )  = O. (3.3) 

It can be shown that solutions satisfying the merger conditions and decreasing as x § co exist 
for the system (3.3). However, these solutions decrease insufficiently rapidly, and the in- 

tegral S~v2xdx does not exist. Therefore, the asymptotic expansion for the axial velocity 

~0 

in the cold boundary layer should start with a term of a lesser order of smallness than 
E (Pr+1)/=Pr. The function ]w(E) is apparently determined in the merging of the last terms 
of the expansions for the separating and cold boundary layers. 

Substituting the asymptotic expansion (3.2) into system (1.7), and keeping_the defini- 
tion of the limit process in the form (3.1) in mind, we obtain an equation for s in the 
zeroth approximation in E 

! xs) • O. (3.4) 
x 

The boundary condition for (3.4) can be obtained in the merger of the expansions for the 
function s for the cold boundary layer and the expansions for the separating layer 

= g ~  , (3.5) 

here the quantity ~ is considered known from the solution of problem (2.13) and (2.14). The 
solution of problem (3.4), (3.5) is evidently 

= g ~ S x o / x "  ( 3 . 6 )  

In connection with the fact that ~w(E) = O(~s(~)), the functions s for the cold boundary 
layer can be identified with f~ [see (1.6)], i.e., in the cold boundary layer the gas flows 
only along the radius, as follows from (3.6). Therefore, problem (1.7)-(1.11) is solved in 
the zeroth approximation in c. 
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To illustrate the flow in the high-temperature jet, we introduce the stream function 

Then the expression 

r 

@ = ~ pwrdr.  
0 

(3.7) 

o (Pr + t) 4 ~  
3--Pr 4~(Pr-- I) ~" (3.8) 

can be obtained for the stream line in the domain r <xo~. It follows from (3.8) that as 
§ the stream lines become parallel to the axis E (r 2 = 2(Pr + 1)@/(3 -- Pr)), while as 

@ + ~ the flow is along the interfacial surface r = xo~, i.e., there is no gas flow outside 
this surface. 

The stream line pattern defined by (3.8) is displayed in the upper part of Fig. 2. Let 
us note that the stream lines will have the same shape only for r § 0. For small but finite 
quantities r the stream line pattern will be different. Formula (3.8) becomes unacceptable 
near the surface r = xor To find the stream function in this case, values of the appropri- 
ate functions for the separating layer (near the surface r = xo~) or the cold boundary layer 
(outside the surface r = xo~ must be substituted in (3.7). The stream line pattern for a 
small but finite value is displayed schematically in the lower part of Fig. 2. In this case 
the stream lines at distances from the jet axis scarcely greater than the thickness of the 
hot boundary layer become parallel to the coordinate direction r, i.e., the cold gas from in- 
finity is set into motion along the radius, its heating and the change in its direction of 
motion occur only in the domain of the separating layer. Let us note that as r diminishes 
the stream lines outside the surface r = xo~-will flatten out along the plane E = 0 and as 

§ 0 all the stream lines (for r > xo~) will be confluent at one E = 0, as is displayed on 
the upper part of Fig. 2. 

In order to confirm the correctness of the solution obtained, a numerical experiment 
was performed. Problem (1.1)-(1.3) was supplemented by the condition 

w = w~ T = T~ ~ r  ~ = go ( 3 . 9 )  

and solved numerically for different values of ~, the Prandtl number, and different modifica- 
tions of assigning the initial conditions (3.9). The relative axial velocity and tempera- 
ture profiles (Wmax, Tmax are values of the respective velocity and temperature on the jet 
axis) are displayed in Figs. 3 and 4 for different values of ~ (these values are marked by 
numbers at the appropriate curves), while values of the product of the longitudinal coordi- 
nate ~by the velocity (temperature) on the axis are superposed in Fig. 5 as a function of ~. 
It is seen from the behavior of the curves in Figs. 3-5 that the velocity and temperature 
profiles become self-similar very rapidly as ~ increases. The computation of these curves 
was performed for the initial conditions (3.9) in the form 

w = 2 exp (--r2),  T = 10.6 exp ( - - t , 9 3 5 r  ~) q- 3 , 45 .10  -~ for ~ = 0,7 
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and for Pr = 2, E = 3.45.10 -5 . In connection with the invariance of the solutions of the 
problem relative to the change of variable ~ + ~ -- ~o (~o is an arbitrary constant), the 
quantity ~o (~o = 0.7) was selected from the condition of minimum in the difference of solu- 
tions of the problem (1.1)-(1.3), (3.9), and the self-similar solution (1.14). 

In conclusion, some considerations should be expressed about the terminology used in 
this paper. Strictly speaking, no boundary layer (neither hot nor cold) occurs for the 
problem (1.7)-(1.10) as e § 0. The domain of nonuniform suitability of the asymptotic ex- 
pansions of the solutions of this problem as e + 0 is not localized near the boundary (the 
boundary layer), but within the integration interval 0 < r < ~. Such a situation usually 
occurs in considering nonuniformities of the internal boundary layer type [3]. However, 
characteristic for such a nonuniformity is that the internal boundary layer is defined: i) 
for singularly perturbed systems of ordinary differential equations, where the singular per- 
turbations are ordinarily understood to be a rise in the order of the perturbed system) 2) 
for boundary-value problems for which the boundary conditions are given in a finite interval. 
For problems with partial derivatives (1.7)-(1.10), the parameter ~ different from zero in- 
duces no perturbations into the problem that are usually called singular. The source of the 
nonuniformity in expansion (1.12) of the solutions of problem (1.7)-(1.10) is the presence 
of the infinite boundary. It is impossible to give boundary conditions arbitrarily for 
singular boundary-value problems. Conditions on the infinitely remote boundary should satis- 
fy system (1.7). In the case of setting boundary conditions of the form 

W-~0 ,  T-+0 for z--~oo (3.10) 

an i n d e t e r m i n a c y  of  t he  t y p e  0 /0  o c c u r s  in  sys t em ( 1 . 7 ) .  For  i n s t a n c e ,  f o r  Pr  < 1 t h e  asymp- 
t o t i c  s o l u t i o n s  of  p rob lem ( 1 . 7 ) - ( 1 . 1 0 )  as  x § ~ w i l l  be 

W = - - 3  ~ P r [ ( 3 -  P r ) ( i -  P r ) ~  L 8 (Pr ~- t) x2] -2/(1-pr). , T =--T~[Pr-~ ff(3--Pr)8~(t--Pr)xJ2q-2pr/(1-Pr) , 

i . e . ,  f o r  Pr  < 1 s u b s t i t u t i o n  o f  c o n d i t i o n s  (3 .1 0 )  i s  p o s s i b l e  in  sys t em ( 1 . 7 ) ,  w h i l e  c o n d i -  
t i o n s  ( 3 . 1 0 )  w i l l  be u n s u i t a b l e  h e r e  f o r  Pr > 1. I t  i s  a l s o  n e c e s s a r y  to  r e c a l l  t h a t  t h e  
c o n s i d e r e d  p rob lem ( 1 . 7 ) - ( 1 . 1 0 )  i s  i t s e l f  a z e r o t h  a p p r o x i m a t i o n  in  t h e  a s y m p t o t i c  e x p a n s i o n  
in  the  sma l l  p a r a m e t e r  Re -x and ,  h e n c e ,  t h e  domain of  n o n u n i f o r m i t y  of  t h e  e x p a n s i o n  (1 .12 )  
is located in the boundary layer. Hence, in our opinion, the nonuniformity domain detected 
refers to a new class, and is called the separating layer. 

The factorization method with iterations was used in numerical computations for problem 
(2.13), (2.14), and the method of [4] for problem (1.1)-(1.3), (3.9). The accuracy of com- 
puting the curves is not below the accuracy of their graphical display. 

The author is grateful to M. A. Gol'dshtik, V. V. Pukhnachev, and V. N. Shtern for tak- 
ing part in discussions of results of the research. 
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